Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2206.11045v1

ABSTRACT

More than two years after its outbreak, the COVID-19 pandemic continues to plague medical systems around the world, putting a strain on scarce resources, and claiming human lives. From the very beginning, various AI-based COVID-19 detection and monitoring tools have been pursued in an attempt to stem the tide of infections through timely diagnosis. In particular, computer audition has been suggested as a non-invasive, cost-efficient, and eco-friendly alternative for detecting COVID-19 infections through vocal sounds. However, like all AI methods, also computer audition is heavily dependent on the quantity and quality of available data, and large-scale COVID-19 sound datasets are difficult to acquire -- amongst other reasons -- due to the sensitive nature of such data. To that end, we introduce the COVYT dataset -- a novel COVID-19 dataset collected from public sources containing more than 8 hours of speech from 65 speakers. As compared to other existing COVID-19 sound datasets, the unique feature of the COVYT dataset is that it comprises both COVID-19 positive and negative samples from all 65 speakers. We analyse the acoustic manifestation of COVID-19 on the basis of these perfectly speaker characteristic balanced `in-the-wild' data using interpretable audio descriptors, and investigate several classification scenarios that shed light into proper partitioning strategies for a fair speech-based COVID-19 detection.


Subject(s)
COVID-19
2.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2203.17012v1

ABSTRACT

Detecting COVID-19 from audio signals, such as breathing and coughing, can be used as a fast and efficient pre-testing method to reduce the virus transmission. Due to the promising results of deep learning networks in modelling time sequences, and since applications to rapidly identify COVID in-the-wild should require low computational effort, we present a temporal-oriented broadcasting residual learning method that achieves efficient computation and high accuracy with a small model size. Based on the EfficientNet architecture, our novel network, named Temporal-oriented ResNet~(TorNet), constitutes of a broadcasting learning block, i.e. the Alternating Broadcast (AB) Block, which contains several Broadcast Residual Blocks (BC ResBlocks) and a convolution layer. With the AB Block, the network obtains useful audio-temporal features and higher level embeddings effectively with much less computation than Recurrent Neural Networks~(RNNs), typically used to model temporal information. TorNet achieves 72.2% Unweighted Average Recall (UAR) on the INTERPSEECH 2021 Computational Paralinguistics Challenge COVID-19 cough Sub-Challenge, by this showing competitive results with a higher computational efficiency than other state-of-the-art alternatives.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL